Source code for autorag.data.chunk.run
import os
from typing import Callable, List, Dict
import pandas as pd
from autorag.strategy import measure_speed
[docs]
def run_chunker(
modules: List[Callable],
module_params: List[Dict],
parsed_result: pd.DataFrame,
project_dir: str,
):
results, execution_times = zip(
*map(
lambda x: measure_speed(x[0], parsed_result=parsed_result, **x[1]),
zip(modules, module_params),
)
)
average_times = list(map(lambda x: x / len(results[0]), execution_times))
# save results to parquet files
filepaths = list(
map(lambda x: os.path.join(project_dir, f"{x}.parquet"), range(len(modules)))
)
list(map(lambda x: x[0].to_parquet(x[1], index=False), zip(results, filepaths)))
filenames = list(map(lambda x: os.path.basename(x), filepaths))
summary_df = pd.DataFrame(
{
"filename": filenames,
"module_name": list(map(lambda module: module.__name__, modules)),
"module_params": module_params,
"execution_time": average_times,
}
)
summary_df.to_csv(os.path.join(project_dir, "summary.csv"), index=False)
return summary_df