Source code for autorag.evaluation.metric.util
import functools
from typing import List
import numpy as np
from autorag.schema.metricinput import MetricInput
from autorag.utils.util import convert_inputs_to_list
[docs]
def calculate_cosine_similarity(a, b):
dot_product = np.dot(a, b)
norm_a = np.linalg.norm(a)
norm_b = np.linalg.norm(b)
similarity = dot_product / (norm_a * norm_b)
return similarity
[docs]
def calculate_l2_distance(a, b):
return np.linalg.norm(a - b)
[docs]
def calculate_inner_product(a, b):
return np.dot(a, b)
[docs]
def autorag_metric(fields_to_check: List[str]):
def decorator_autorag_metric(func):
@functools.wraps(func)
@convert_inputs_to_list
def wrapper(metric_inputs: List[MetricInput], **kwargs) -> List[float]:
"""
Use 'for loop' to run each metric input.
Put the single metric input into the metric function.
:param metric_inputs: A list MetricInput schema for AutoRAG metric.
:param kwargs: The additional arguments for metric function.
:return: A list of computed metric scores.
"""
results = []
for metric_input in metric_inputs:
if metric_input.is_fields_notnone(fields_to_check=fields_to_check):
results.append(func(metric_input, **kwargs))
else:
results.append(None)
return results
return wrapper
return decorator_autorag_metric
[docs]
def autorag_metric_loop(fields_to_check: List[str]):
def decorator_autorag_generation_metric(func):
@functools.wraps(func)
@convert_inputs_to_list
def wrapper(metric_inputs: List[MetricInput], **kwargs) -> List[float]:
"""
Put the list of metric inputs into the metric function.
:param metric_inputs: A list MetricInput schema for AutoRAG metric.
:param kwargs: The additional arguments for metric function.
:return: A list of computed metric scores.
"""
bool_list = [
metric_input.is_fields_notnone(fields_to_check=fields_to_check)
for metric_input in metric_inputs
]
valid_inputs = [
metric_input
for metric_input, is_valid in zip(metric_inputs, bool_list)
if is_valid
]
results = [None] * len(metric_inputs)
if valid_inputs:
processed_valid = func(valid_inputs, **kwargs)
valid_index = 0
for i, is_valid in enumerate(bool_list):
if is_valid:
results[i] = processed_valid[valid_index]
valid_index += 1
return results
return wrapper
return decorator_autorag_generation_metric