Source code for autorag.evaluation.retrieval
import functools
import warnings
from typing import List, Callable, Any, Tuple, Union, Dict
import pandas as pd
from autorag.evaluation.metric import (
retrieval_recall,
retrieval_precision,
retrieval_f1,
retrieval_ndcg,
retrieval_mrr,
retrieval_map,
)
from autorag.evaluation.util import cast_metrics
from autorag.schema.metricinput import MetricInput
RETRIEVAL_METRIC_FUNC_DICT = {
func.__name__: func
for func in [
retrieval_recall,
retrieval_precision,
retrieval_f1,
retrieval_ndcg,
retrieval_mrr,
retrieval_map,
]
}
[docs]
def evaluate_retrieval(
metric_inputs: List[MetricInput],
metrics: Union[List[str], List[Dict]],
):
def decorator_evaluate_retrieval(
func: Callable[
[Any], Tuple[List[List[str]], List[List[str]], List[List[float]]]
],
):
"""
Decorator for evaluating retrieval results.
You can use this decorator to any method that returns (contents, scores, ids),
which is the output of conventional retrieval modules.
:param func: Must return (contents, scores, ids)
:return: wrapper function that returns pd.DataFrame, which is the evaluation result.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs) -> pd.DataFrame:
contents, pred_ids, scores = func(*args, **kwargs)
for metric_input, pred_id in zip(metric_inputs, pred_ids):
metric_input.retrieved_ids = pred_id
metric_scores = {}
metric_names, metric_params = cast_metrics(metrics)
for metric_name, metric_param in zip(metric_names, metric_params):
if metric_name in RETRIEVAL_METRIC_FUNC_DICT:
metric_func = RETRIEVAL_METRIC_FUNC_DICT[metric_name]
metric_scores[metric_name] = metric_func(
metric_inputs=metric_inputs, **metric_param
)
else:
warnings.warn(
f"metric {metric_name} is not in supported metrics: {RETRIEVAL_METRIC_FUNC_DICT.keys()}"
f"{metric_name} will be ignored."
)
metric_result_df = pd.DataFrame(metric_scores)
execution_result_df = pd.DataFrame(
{
"retrieved_contents": contents,
"retrieved_ids": pred_ids,
"retrieve_scores": scores,
}
)
result_df = pd.concat([execution_result_df, metric_result_df], axis=1)
return result_df
return wrapper
return decorator_evaluate_retrieval