Source code for autorag.validator
import itertools
import logging
import os
import tempfile
import pandas as pd
from autorag.evaluator import Evaluator
from autorag.utils import (
cast_qa_dataset,
cast_corpus_dataset,
validate_qa_from_corpus_dataset,
)
logger = logging.getLogger("AutoRAG")
[docs]
class Validator:
def __init__(self, qa_data_path: str, corpus_data_path: str):
"""
Initialize a Validator object.
:param qa_data_path: The path to the QA dataset.
Must be parquet file.
:param corpus_data_path: The path to the corpus dataset.
Must be parquet file.
"""
# validate data paths
if not os.path.exists(qa_data_path):
raise ValueError(f"QA data path {qa_data_path} does not exist.")
if not os.path.exists(corpus_data_path):
raise ValueError(f"Corpus data path {corpus_data_path} does not exist.")
if not qa_data_path.endswith(".parquet"):
raise ValueError(f"QA data path {qa_data_path} is not a parquet file.")
if not corpus_data_path.endswith(".parquet"):
raise ValueError(
f"Corpus data path {corpus_data_path} is not a parquet file."
)
self.qa_data = pd.read_parquet(qa_data_path, engine="pyarrow")
self.corpus_data = pd.read_parquet(corpus_data_path, engine="pyarrow")
self.qa_data = cast_qa_dataset(self.qa_data)
self.corpus_data = cast_corpus_dataset(self.corpus_data)
[docs]
def validate(self, yaml_path: str, qa_cnt: int = 5, random_state: int = 42):
# Determine the sample size and log a warning if qa_cnt is larger than available records
available_records = len(self.qa_data)
safe_sample_size = min(qa_cnt, available_records) # 먼저 safe_sample_size 계산
if safe_sample_size < qa_cnt:
logger.warning(
f"Minimal Requested sample size ({qa_cnt}) is larger than available records ({available_records}). "
f"Sampling will be limited to {safe_sample_size} records. "
)
# safe sample QA data
sample_qa_df = self.qa_data.sample(
n=safe_sample_size, random_state=random_state
)
sample_qa_df.reset_index(drop=True, inplace=True)
# get doc_id
temp_qa_df = sample_qa_df.copy(deep=True)
flatten_retrieval_gts = (
temp_qa_df["retrieval_gt"]
.apply(lambda x: list(itertools.chain.from_iterable(x)))
.tolist()
)
target_doc_ids = list(itertools.chain.from_iterable(flatten_retrieval_gts))
# make sample corpus data
sample_corpus_df = self.corpus_data.loc[
self.corpus_data["doc_id"].isin(target_doc_ids)
]
sample_corpus_df.reset_index(drop=True, inplace=True)
validate_qa_from_corpus_dataset(sample_qa_df, sample_corpus_df)
# start Evaluate at temp project directory
with (
tempfile.NamedTemporaryFile(suffix=".parquet", delete=False) as qa_path,
tempfile.NamedTemporaryFile(suffix=".parquet", delete=False) as corpus_path,
tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as temp_project_dir,
):
sample_qa_df.to_parquet(qa_path.name, index=False)
sample_corpus_df.to_parquet(corpus_path.name, index=False)
evaluator = Evaluator(
qa_data_path=qa_path.name,
corpus_data_path=corpus_path.name,
project_dir=temp_project_dir,
)
evaluator.start_trial(yaml_path, skip_validation=True)
qa_path.close()
corpus_path.close()
os.unlink(qa_path.name)
os.unlink(corpus_path.name)
logger.info("Validation complete.")