.. AutoRAG documentation master file, created by sphinx-quickstart on Wed Jan 17 20:55:21 2024. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. .. meta:: :title: AutoRAG docs documentation :description: AutoRAG - AutoML tool for RAG official developer documentation docs :keywords: AutoRAG,Auto RAG,RAG,AutoRAG docs,LLM,RAG optimization :robots: index,nofollow ######################## AutoRAG documentation ######################## RAG AutoML tool for automatically finds an optimal RAG pipeline for your data. πŸ€·β€β™‚οΈ Why AutoRAG? ************************************ There are numerous RAG pipelines and modules out there, but you don’t know what pipeline is great for β€œyour own data” and "your own use-case." Making and evaluating all RAG modules is very time-consuming and hard to do. But without it, you will never know which RAG pipeline is the best for your own use-case. That's where **AutoRAG** comes in. πŸ€Έβ€β™‚οΈ How can AutoRAG helps? ************************************ AutoRAG is a tool for finding optimal RAG pipeline for β€œyour data.” You can evaluate various RAG modules automatically with your own evaluation data, and find the best RAG pipeline for your own use-case. AutoRAG supports - **Data Creation**: Create RAG evaluation data with your own raw documents. - **Optimization**: Automatically run experiments to find the best RAG pipeline for your own data. - **Deployment**: Deploy the best RAG pipeline with single yaml file. Supports Flask server as well. πŸš€ AutoRAG GUI ************************************ AutoRAG GUI is a web-based tool for running AutoRAG experiments. If you are not familiar with command-line interface and YAML file configuration, you can use AutoRAG GUI to run AutoRAG experiments. Check out `AutoRAG GUI Docs `__ for more information. πŸƒβ€β™‚οΈ Getting Started ************************************ ``pip install AutoRAG`` In our documentation, we will guide you through the process of `installation `__ and `tutorial `__ for AutoRAG starter. After you find your first RAG pipeline with AutoRAG, you can learn how to read result files at `here `__. And do you want to get the ultimate performance RAG pipeline? Learn how make great evaluation dataset with your own raw documents at `here `__. Also, you can learn how to set various experiment configurations at `optimization `__ guide. Of course, you can use your own local LLM or embedding model with AutoRAG. Go to `here `__ to learn how to use your own model with AutoRAG. If you face any trouble? Check out our `troubleshooting `__ guide. Also, feel free to ask your question at our `github issue `__ or `Discord `__ channel. πŸ—£οΈ Talk with Founders ************************************ * Jeffrey Kim : https://zcal.co/autorag-jeffrey/autorag-demo-15min * Bobb Kim : https://zcal.co/i/tcuLtmq5 πŸ‘¨β€πŸ‘©β€πŸ‘§β€πŸ‘¦ Ecosystem ************************************ * Github Repo : https://github.com/Marker-Inc-Korea/AutoRAG * HomePage : https://auto-rag.com * PyPI : https://pypi.org/project/AutoRAG/ * Discord : https://discord.gg/P4DYXfmSAs * Roadmap : https://github.com/orgs/Auto-RAG/projects/1/views/2 * HuggingFace : https://huggingface.co/AutoRAG * LinkedIn : https://www.linkedin.com/company/autorag/ * X (Twitter) : https://twitter.com/AutoRAG_HQ .. toctree:: :maxdepth: 1 :caption: Getting Started :hidden: install.md tutorial.md structure.md troubleshooting.md local_model.md migration.md test_your_rag.md .. toctree:: :maxdepth: 1 :caption: AutoRAG GUI :hidden: gui/gui.md .. toctree:: :maxdepth: 1 :caption: Vector DB :hidden: vectordb/vectordb.md .. toctree:: :maxdepth: 2 :caption: Data Creation :hidden: data_creation/tutorial.md data_creation/data_format.md data_creation/data_creation.md .. toctree:: :maxdepth: 2 :caption: Optimization :hidden: optimization/optimization.md optimization/folder_structure.md optimization/custom_config.md optimization/strategies.md optimization/sample_config.md .. toctree:: :maxdepth: 3 :caption: Integration :hidden: integration/llm/llm.md integration/vectordb/vectordb.md .. toctree:: :maxdepth: 2 :caption: Evaluation Metrics :hidden: evaluate_metrics/retrieval.md evaluate_metrics/retrieval_contents.md evaluate_metrics/generation.md .. toctree:: :maxdepth: 3 :caption: Nodes & Modules :hidden: nodes/index.md nodes/query_expansion/query_expansion.md nodes/retrieval/retrieval.md nodes/passage_augmenter/passage_augmenter.md nodes/passage_reranker/passage_reranker.md nodes/passage_filter/passage_filter.md nodes/passage_compressor/passage_compressor.md nodes/prompt_maker/prompt_maker.md nodes/generator/generator.md .. toctree:: :maxdepth: 2 :caption: Deploy :hidden: deploy/api_endpoint.md deploy/web.md .. toctree:: :maxdepth: 1 :caption: Roadmap :hidden: roadmap/modular_rag.md .. toctree:: :maxdepth: 1 :caption: API Reference :hidden: api_spec/modules