RAGchain.benchmark.answer package
Submodules
RAGchain.benchmark.answer.metrics module
- class RAGchain.benchmark.answer.metrics.BLEU
Bases:
BaseAnswerMetric
- retrieval_metric_function(solutions: List[str], pred: str) float
- class RAGchain.benchmark.answer.metrics.BaseAnswerMetric
Bases:
ABC
- eval(solutions: List[str], pred: str) float
-
- Parameters:
-
solutions – list of solutions. If you have only one ground truth answer, you can use [answer].
pred – predicted answer
- property metric_name
- abstract retrieval_metric_function(solutions: List[str], pred: str) float
- class RAGchain.benchmark.answer.metrics.BasePassageAnswerMetric
Bases:
BaseAnswerMetric
,ABC
- eval(knowledge: List[str], pred: str) float
-
- Parameters:
-
knowledge – list of knowledge. Generally it is ground truth passages for a question.
pred – predicted answer
- abstract retrieval_metric_function(knowledge: List[str], pred: str) float
- class RAGchain.benchmark.answer.metrics.EM_answer
Bases:
BaseAnswerMetric
- retrieval_metric_function(solutions: List[str], pred: str) float
- class RAGchain.benchmark.answer.metrics.KF1
Bases:
BasePassageAnswerMetric
- retrieval_metric_function(knowledge: List[str], pred: str) float
- class RAGchain.benchmark.answer.metrics.METEOR
Bases:
BaseAnswerMetric
- retrieval_metric_function(solutions: List[str], pred: str) float
- class RAGchain.benchmark.answer.metrics.ROUGE
Bases:
BaseAnswerMetric
- retrieval_metric_function(solutions: List[str], pred: str) float