RAGchain.benchmark.retrieval package
Submodules
RAGchain.benchmark.retrieval.evaluator module
- RAGchain.benchmark.retrieval.evaluator.basic_retrieval_evaluation(qrels: Dict[str, List[str]], preds: Dict[str, List[str]], k_values: List[int], qrels_relevance: Dict[str, List[int]] | None = None, preds_relevance: Dict[str, List[float]] | None = None) List[dict[str, float]]
- Parameters:
qrels – The query id is key, and the value is content of retrieved passage ids. Dict[query_id, List[ids]]
preds – The query id is key, and the value is content of retrieved passage ids. Dict[query_id, List[ids]]
k_values – The k values for which the evaluation should be done. List[int]
qrels_relevance – The query id is key, and the value is the rate from ground truths. Dict[query_id, List[rate]]
preds_relevance – The query id is key, and the value is the relevance score from predictions. Dict[query_id, List[relevance score]]
results doc_id can be different from the doc_id in the qrels file.
- RAGchain.benchmark.retrieval.evaluator.check_retrieval_eval(qrels: Dict[str, List[str]], preds: Dict[str, List[str]], k_values: List[int], qrels_relevance: Dict[str, List[int]] | None = None, preds_relevance: Dict[str, List[float]] | None = None)
- RAGchain.benchmark.retrieval.evaluator.stretagyqa_k_eval(solution: dict, pred: dict, metrics: list, k: int) dict
- RAGchain.benchmark.retrieval.evaluator.stretagyqa_retrieval_evaluation(qrels: List[dict], preds: dict, k_values: List[int]) List[dict[str, float]]
- Parameters:
qrels – The qrels file as a dictionary.
preds – The results file as a dictionary.
- K_values:
The k values for which the evaluation should be done. List[int]
results doc_id can be different from the doc_id in the qrels file.
RAGchain.benchmark.retrieval.metrics module
- class RAGchain.benchmark.retrieval.metrics.AP
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.BaseRetrievalMetric
Bases:
ABC
- eval(solution: Dict[str, int], pred: Dict[str, float], k: int) float
- property metric_name
- abstract retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.CG
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.DCG
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.EM_retrieval
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.F1
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.Hole
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.IDCG
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.IndDCG
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.IndIDCG
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.NDCG
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.Precision
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.RR
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
Reciprocal Rank (RR) is the reciprocal of the rank of the first relevant item. Mean of RR in whole querys is MRR.
- class RAGchain.benchmark.retrieval.metrics.Recall
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- class RAGchain.benchmark.retrieval.metrics.TopKAccuracy
Bases:
BaseRetrievalMetric
- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float