RAGchain.benchmark.retrieval package
Submodules
RAGchain.benchmark.retrieval.evaluator module
- RAGchain.benchmark.retrieval.evaluator.basic_retrieval_evaluation(qrels: Dict[str, List[str]], preds: Dict[str, List[str]], k_values: List[int], qrels_relevance: Dict[str, List[int]] | None = None, preds_relevance: Dict[str, List[float]] | None = None) List[dict[str, float]]
- Parameters:
- qrels – The query id is key, and the value is content of retrieved passage ids. Dict[query_id, List[ids]] 
- preds – The query id is key, and the value is content of retrieved passage ids. Dict[query_id, List[ids]] 
- k_values – The k values for which the evaluation should be done. List[int] 
- qrels_relevance – The query id is key, and the value is the rate from ground truths. Dict[query_id, List[rate]] 
- preds_relevance – The query id is key, and the value is the relevance score from predictions. Dict[query_id, List[relevance score]] 
 
 - results doc_id can be different from the doc_id in the qrels file. 
- RAGchain.benchmark.retrieval.evaluator.check_retrieval_eval(qrels: Dict[str, List[str]], preds: Dict[str, List[str]], k_values: List[int], qrels_relevance: Dict[str, List[int]] | None = None, preds_relevance: Dict[str, List[float]] | None = None)
- RAGchain.benchmark.retrieval.evaluator.stretagyqa_k_eval(solution: dict, pred: dict, metrics: list, k: int) dict
- RAGchain.benchmark.retrieval.evaluator.stretagyqa_retrieval_evaluation(qrels: List[dict], preds: dict, k_values: List[int]) List[dict[str, float]]
- Parameters:
- qrels – The qrels file as a dictionary. 
- preds – The results file as a dictionary. 
 
- K_values:
- The k values for which the evaluation should be done. List[int] 
 - results doc_id can be different from the doc_id in the qrels file. 
RAGchain.benchmark.retrieval.metrics module
- class RAGchain.benchmark.retrieval.metrics.AP
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.BaseRetrievalMetric
- Bases: - ABC- eval(solution: Dict[str, int], pred: Dict[str, float], k: int) float
 - property metric_name
 - abstract retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.CG
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.DCG
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.EM_retrieval
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.F1
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.Hole
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.IDCG
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.IndDCG
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.IndIDCG
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.NDCG
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.Precision
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.RR
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
- Reciprocal Rank (RR) is the reciprocal of the rank of the first relevant item. Mean of RR in whole querys is MRR. 
 
- class RAGchain.benchmark.retrieval.metrics.Recall
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float
 
- class RAGchain.benchmark.retrieval.metrics.TopKAccuracy
- Bases: - BaseRetrievalMetric- retrieval_metric_function(solution: Dict[str, int], pred: Dict[str, float], k_value: int = 1) float